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Abstract

A new modal analysis method for rotor systems with periodically time-varying parameters is proposed.
The essence of the method is to introduce the modulated coordinates such that the periodically time-
varying linear differential equations can be effectively transformed to the equivalent time-invariant linear
differential equations. This paper presents the modal analysis procedure for the asymmetric rotor system, of
which rotating and stationary parts possess asymmetric and isotropic properties, respectively. With a
simple asymmetric rotor model, the analytical modal analysis procedure is illustrated and compared with
the conventional method based on formulation in the rotating coordinates. A numerical example with a
flexible asymmetric rotor model is also provided to demonstrate the effectiveness of the proposed method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of asymmetric properties, either in the rotor part or in the stator part, can
significantly affect the dynamic characteristics of a rotor system. However, there are few modal
analysis methods found to be appropriate for rotating machinery with asymmetric properties. In
particular, modal analysis of asymmetric rotor systems, when the equations of motion are written
see front matter r 2004 Elsevier Ltd. All rights reserved.
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in the stationary coordinates, becomes mathematically involved, since the system matrices of
governing linear differential equations contain periodically time-varying parameters, leading to
Hill’s equation [1]. A direct method has been introduced in Ref. [2] to perform a modal analysis
for such periodically time-varying parameter systems by employing the time-varying eigenvectors.
However, the method, up until now, is limited to the systems that are represented in the real
coordinates. The analysis of time-varying parameter systems has often adopted the harmonic
balance method, which has been usually confined to the analysis of natural frequencies [3].
The present study proposes a new modal analysis method for rotor systems with asymmetric

properties employing modulated coordinates. This paper deals with asymmetric rotors, which
possess asymmetric properties only in the rotor part. For asymmetric rotor systems, the
periodically time-varying linear differential equations expressed in the stationary coordinates can
be transformed to the time-invariant linear differential equations expressed in the rotating
coordinates. Then the modal analysis method becomes essentially the same as the ordinary
complex modal analysis method developed for anisotropic rotors, which possess asymmetric
properties only in the stator part [4,5]. However, it is often required that the modal analysis
formulated in the rotating coordinates be transformed back into the stationary coordinates, in
order to develop the modal testing schemes normally carried out in the stationary coordinates.
To resolve such a difficulty, Lee et al. [6–8] proposed an idea of complex modal analysis using a

coordinate modulation technique, which makes it possible to take advantage of excitations and
measurements based on the stationary coordinates. On the other hand, they introduced a concept
of normal and reverse directional frequency response functions for detection of asymmetry in
rotors. The reverse-directional frequency response function (r-dFRF) is found to be a sensitive
indicator of the asymmetric, deviatoric property of the rotor system whereas the normal-
directional frequency response function (n-dFRF) is an indicator of the symmetric, mean property
of the rotor system. However, they discussed neither the eigenvalues nor the eigenvectors related
to the modulated coordinates.
The primary aim of this paper is to introduce a generalized theory of complex modal analysis

method using the modulated complex stationary coordinates for asymmetric rotor systems with
isotropic stators. In this case, the proposed modal method provides a complete modal solution such
as eigenvalues and latent vectors (eigenvectors) for asymmetric rotor systems. The method introduces
the modulated complex stationary coordinates to derive an equivalent linear time-invariant equation
of motion. Then, the characteristics of eigenvalues and latent vectors are theoretically investigated
thoroughly by using the equivalent linear time-invariant equation of motion. Two analytical and
numerical examples are treated to demonstrate the effectiveness of the proposed method.
2. Modal analysis of asymmetric rotor system

2.1. Equation of motion in the modulated stationary coordinates

The equation of motion of asymmetric rotor system can be written, using the complex
stationary coordinates, as [3,6]

Mf €pðtÞ þMr
€̄pðtÞej2Ot þ Cf _pðtÞ þ Cr

_̄pðtÞej2Ot þ Kf pðtÞ þ Krp̄ðtÞe
j2Ot ¼ gðtÞ (1a)
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or

Mf Mr

M̄r M̄f

" #
€pðtÞ

€̄pðtÞej2Ot

( )
þ

Cf Cr

C̄r C̄f

" #
_pðtÞ

_̄pðtÞej2Ot

( )
þ

Kf Kr

K̄r K̄f

" #
pðtÞ

p̄ðtÞej2Ot

( )
¼

gðtÞ

ḡðtÞej2Ot

( )
;

(1b)

where Mi; Ci and Ki denote the complex valued N�N generalized mass, damping and stiffness
matrices, respectively, the subscripts i ¼ f ; r refer to the mean and deviatoric values, respectively;
pðtÞ ¼ yðtÞ þ jzðtÞ and gðtÞ ¼ fyðtÞ þ jfzðtÞ are the N� 1 complex response and input vectors,
respectively, yðtÞ and zðtÞ are the real valued response vectors, and, fyðtÞ and fzðtÞ are the real
valued input vectors, in the direction of Y and Z in the stationary coordinates, forming a plane
perpendicular to the bearing axis, respectively, O is the rotational speed of the shaft, N is the
dimension of the complex coordinate vector, j is the imaginary number; the bar indicates the
complex conjugate. Note here that the time-varying parameters associated with the harmonic
frequency of twice the rotational speed appear due to the asymmetry in the rotor part. Note that
the system matrices, including the effect of the gyroscopic moment, internal damping and fluid-
film bearing characteristics, may be dependent upon the rotational speed. However, they become
constant for given rotational speed.
It will prove convenient to introduce the modulated complex coordinate and force vectors, ~pðtÞ

and ~gðtÞ; defined as

~p tð Þ ¼ p̄ tð Þej2Ot; ~g tð Þ ¼ ḡ tð Þej2Ot: (2)

Substituting relations (2) into Eq. (1b), we obtain

M€qðtÞ þ C_qðtÞ þ KqðtÞ ¼ fðtÞ; (3)

where

M ¼
Mf Mr

M̄r M̄f

" #
2N�2N

; C ¼
Cf Cr � j4OMr

C̄r C̄f � j4OM̄f

" #
2N�2N

;

K ¼
Kf Kr � j2OCr � 4O2Mr

K̄r K̄f � j2OC̄f � 4O2M̄f

" #
2N�2N

;

qðtÞ ¼
pðtÞ

~pðtÞ

( )
2N�1

; fðtÞ ¼
gðtÞ

~gðtÞ

( )
2N�1

:

Note here that the periodically time-varying nature of the original system parameters is all taken
by the newly defined, modulated stationary coordinates, leading to the time-invariant parameter,
but speed-dependent, differential equation (3) defined with respect to an unusual, but still
stationary, coordinate system.
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2.2. Modal analysis

Assuming the solution form of q tð Þ ¼ uce
lt; one obtains the sets of homogeneous equations

associated with Eq. (3) as [4]

Dðli
rÞu

i
cr ¼ 0 and v̄iT

crDðl
i
rÞ ¼ 0

T; r ¼ �1;�2; . . . ;�N; i ¼ B;F ; (4a)

where the lambda matrix of degree two is given by

DðlÞ ¼ l2Mþ lCþ K ¼
Df ðlÞ ~DrðlÞ

DrðlÞ ~Df ðlÞ

" #
; (4b)

with

Df ðlÞ ¼ l2Mf þ lCf þ Kf ;

DrðlÞ ¼ l2M̄r þ lC̄r þ K̄r;

~DrðlÞ ¼ l2Mr þ lðCr � j4OMrÞ þ Kr � j2OCr � 4O2Mr;

~Df ðlÞ ¼ l2M̄f þ lðC̄f � j4OM̄f Þ þ K̄f � j2OC̄f � 4O2M̄f ; ð4cÞ

and the right and left latent vectors take the form of

uc ¼
u

�u

� �
; v̄c ¼

v̄

�̄v

� �
: (4d)

The latent roots (eigenvalues) l are determined from the characteristic polynomial of order 4N

DðlÞ
�� �� ¼ Df ðlÞ ~DrðlÞ

DrðlÞ ~Df ðlÞ

�����
����� ¼ 0: (5)

Here, the pair of eigenvalues, equal in subscript value but different in sign of subscript, are
dependent upon each other; they are complex conjugate pairs with a shift parameter j2O; as will be
shown later. And the superscripts B and F implicitly refer to the backward and forward modes,
respectively [4].
The latent vectors, obtained from Eq. (4a), are normalized so as to satisfy the bi-orthonormality

condition given by

ðli
r þ lk

s Þv̄
kT

csMU
i
cr þ v̄

kT

cs Cu
i
cr ¼ dki

sr ; r; s ¼ þ1; . . .� N; i; k ¼ B;F (6a)

or, for r ¼ s; i ¼ k;

v̄Tc D
0ðlÞ½ 
uc ¼ v̄T �̄v

T
n o D0

f ðlÞ ~D
0

rðlÞ

D0
rðlÞ ~D

0

f ðlÞ

2
4

3
5 u

�u

� �
¼ 1; (6b)

where

D0ðlÞ ¼
d

dl
DðlÞ ¼ 2lMþ C; (6c)
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and the Kronecker delta is defined as

dki
sr ¼

1 when i ¼ k and r ¼ s;

0 otherwise:

�
(6d)

Since the eigensolution takes the form of

qðtÞ ¼
p tð Þ

~p tð Þ

( )
¼

p tð Þ

p̄ tð Þej2Ot

( )
¼

u

�u

� �
elt; (7a)

it holds, for each eigensolution,

p tð Þ ¼ ui
re

li
rt;

~p tð Þ ¼ p̄ tð Þej2Ot ¼ ūk
s e

ðl̄
k

s þj2OÞt ¼ �ui
re

li
rt:

(7b)

or, equivalently,

ūk
s ¼ �ui

r and l̄
k

s þ j2O ¼ li
r: (7c)

In order to satisfy the above two relations (7c), it should hold

s ¼ �r; i ¼ k or s ¼ r; i ¼ k; Im li
r

� �
¼ O: (8)

Note that the second set of conditions is not met in general for all O: From the first set of
conditions, it can be shown that the eigenvalues and right latent vectors, which are associated with
the pair of positive and negative subscripts, satisfy the relations given by

li
r; li

�rð¼ l̄
i

r þ j2OÞ; (9a)

ui
cr ¼

u

�u

� �i

r

¼
ur

ū�r

( )i

; ui
c�r ¼

u

�u

� �i

�r

¼
�̄u

ū

( )i

r

¼
u�r

ūr

( )i

; (9b)

r ¼ �1;�2; . . .� N; i ¼ B;F :

Similarly, one can obtain the relation between the left latent vectors as

vi
cr ¼

v

�v

� �i

r

¼
vr

v̄�r

( )i

; vi
c�r ¼

v

�v

� �i

�r

¼
�̄v

v̄

( )i

r

¼
v�r

v̄r

( )i

; (10)

r ¼ �1;�2; . . .� N; i ¼ B;F :

Note that the eigenvalue li
�r can be derived as the complex conjugate of l

i
r with a shift of j2O

and that the corresponding latent vectors can also be derived from each other as given in
Eqs. (9b) and (10).
The complex response vector pðtÞ can then be expanded in terms of the right latent vectors as

p tð Þ ¼
X

i¼B;F

XN

r¼�N

0fui
rZ

i
rðtÞg; (11a)
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where the principal coordinates Zi
rðtÞ satisfy the 4N sets of modal equations given by

_Zi
rðtÞ � li

rZ
i
rðtÞ ¼ v̄

iT
r gðtÞ þ �̄v

iT

r ~gðtÞ; r ¼ �1;�2; . . .� N; i ¼ B;F : (11b)

Here,
PN 0

r¼�N is the summation operator excluding r ¼ 0: From Eq. (11), we can derive the
input-output relation in the frequency domain as

P joð Þ ¼ Hgp H ~gp

h i G joð Þ

~G joð Þ

( )
; (12a)

where

Hgp joð Þ ¼
X

i¼B;F

XN

r¼�N

0 uv̄T

jo� l

� �i

r

¼
X

i¼B;F

XN

r¼1

ui
rv̄

iT

�r

jo� li
r

þ
ui
�rv̄

iT

r

jo� li
�r

" #
;

H ~gp joð Þ ¼
X

i¼B;F

XN

r¼�N

0 u�̄v
T

jo� l

" #i

r

¼
X

i¼B;F

XN

r¼1

ui
rv

iT

r

jo� li
r

þ
ui
�rv

iT

r

jo� li
�r

" #
; ð12bÞ

~GðjoÞ ¼ Ĝ jðo� 2OÞ
� �

:

Here PðjoÞ; GðjoÞ and ĜðjoÞ are the Fourier transforms of pðtÞ; gðtÞ and ḡðtÞ; respectively, and,
Hgp and H ~gp are referred to as the normal directional frequency response matrix (n-dFRM) and
the reverse directional frequency response matrix (r-dFRM), respectively.

2.3. Norm of residue matrices for weakly asymmetric rotor

The homogeneous Eq. (4) can be rewritten, for the weakly asymmetric rotor with a small
perturbation �; the degree of rotating asymmetry, as

Df ðl
i
rÞ � ~Drðl

i
rÞ

�Drðl
i
rÞ

~Df ðl
i
rÞ

" #
ui

r

�ui
r

( )
¼

0

0

� �
; (13a)

v̄iT
r �̄v

iT

r

n o Df ðl
i
rÞ � ~Drðl

i
rÞ

�Drðl
i
rÞ

~Df ðl
i
rÞ

" #
¼ 0T 0T
� �

; (13b)

where the terms preceded by � indicate the small perturbations. When the rotor becomes isotropic,
i.e. � ¼ 0; Eq. (13) reduces to

Df ðl
i
r0Þu

i
r0

~Df ðl
i
r0Þ�u

i
r0

( )
¼

0

0

� �
; (14a)

v̄iT
r0Df ðl

i
r0Þ �̄v

iT

r0
~Df ðl

i
r0Þ

n o
¼ 0T 0T
� �

; (14b)

with the latent roots satisfying

Df ðl
i
r0Þ

�� �� ¼ ~Df ðl
i
�r0Þ

�� �� ¼ 0; r ¼ 1; 2; . . . ;N; i ¼ B;F ; (14c)
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where the subscript ‘0’ means the associated isotropic rotor with � ¼ 0:Note that, according to the
notational conventions (10) and (14c), we have

ui
r0 ¼ v̄

i
r0 ¼ 0 for ro0;

�ui
r0 ¼ �̄v

i

r0 ¼ 0 for r40;
(15)

which are consistent with the results in Eqs. (9) and (10).
The latent vectors in Eq. (13) reduce to, for r40;

ui
r

�ui
r

( )
ffi

ui
r0

�ui
r0

( )
þ �

ui
r1

�ui
r1

( )
¼

ui
r0 þ �ui

r1

��ui
r1

( )
; (16a)

v̄iT
r �̄v

iT

r

n o
ffi v̄iT

r0 �̄v
iT

r0

n o
þ � v̄iT

r1 �̄v
iT

r1

n o
¼ v̄iT

r0 þ �v̄iT
r1 ��̄v

iT

r1

n o
; (16b)

and, for ro0,

ui
r

�ui
r

( )
ffi

ui
r0

�ui
r0

( )
þ �

ui
r1

�ui
r1

( )
¼

�ui
r1

�ui
r0 þ ��ui

r1

( )
; (16c)

v̄iT
r �̄v

iT

r

n o
ffi v̄iT

r0 �̄v
iT

r0

n o
þ � v̄iT

r1 �̄v
iT

r1

n o
¼ �v̄iT

r1 �̄v
iT

r0 þ ��̄v
iT

r1

n o
: (16d)

On the other hand, the latent roots, due to the presence of asymmetry � in the rotor model, can be
approximated as

li
r ffi li

r0 þ �2li
r2; r ¼ �1;�2; . . . ;�N; (17)

of which proof is given in Appendix. We can now express the norm order of the residue matrices
in Eq. (12b), from Eq. (16), as [9]

Ki
r

�� �� ¼ ui
rv̄

iT
r

�� ��p ui
r

�� �� � v̄iT
r

�� �� �
Oð1Þ

Oð�2Þ

(
for r40;

for ro0;

�K
i

r

��� ��� ¼ ui
r �̄v

iT

r

��� ���p ui
r

�� �� � �̄v
iT

r

��� ��� �
Oð�Þ

Oð�Þ

(
for r40;

for ro0;

(18a)

leading to

Hgp joð Þ
�� �� �

X
i¼B;F

XN

r¼1

Oð1Þ

jo� li
r

�� ��þ Oð�2Þ

jo� li
�r

�� ��
" #

;

H ~gp joð Þ
�� �� �

X
i¼B;F

XN

r¼1

Oð�Þ

jo� li
r

�� ��þ Oð�Þ

jo� li
�r

�� ��
" #

: ð18bÞ

It can be concluded from Eq. (18b) that
1.
 ratio of the residue value of the normal dFRF between the positive and negative subscripted
modes becomes Oð�2Þ The positive and negative subscripted modes are referred to as the strong
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and weak modes, respectively. The strong modes, which are associated with the mean property
of the rotor, are easily detected, but the weak modes, which are associated with the deviatoric
property of the rotor, are hardly detected in the normal dFRF unless the degree of asymmetry
becomes prominent.
2.
 The residue value of the r-dFRF for all, strong and weak, modes becomes the order of � in
magnitude. And the r-dFRF tends to vanish, as the asymmetry of the rotor decreases. Thus the
magnitude of the r-dFRF, relative to that of the n-dFRF for strong modes, is a good indicator
for presence of asymmetry in the rotor.

Note here that O(1) may be smaller or larger in magnitude than O �; dð Þ; depending upon the
frequency o of interest. However, O(1) is independent of �; d; unlike O �; dð Þ:

2.4. Relation between the modulated and rotating coordinates

The equation of motion of asymmetric rotor system in the rotating coordinates can be written as

M€qðtÞ þ C _qðtÞ þ KqðtÞ ¼ f ðtÞ; (19)

where

C ¼

Cf þ j2OMf Cr � j2OMr

C̄r þ j2OM̄r C̄f � j2OM̄f

" #
2N�2N

;

K ¼
Kf þ jOCf � O2Mf Kr � jOCr � O2Mr

K̄r þ jOC̄r � O2M̄r K̄f � jOC̄f � O2M̄f

2
4

3
5
2N�2N

;

qðtÞ ¼
pðtÞ

p̄ðtÞ

( )
¼

pðtÞe�jOt

p̄ðtÞejOt

( )
; f ðtÞ ¼

g tð Þ

ḡ tð Þ

( )
¼

g tð Þe�jOt

ḡ tð ÞejOt

( )
:

Here, the italicized, bold-faced letters represent the system matrices defined in the rotating
coordinates. The relation between the stationary coordinates pðtÞ and the rotating coordinates pðtÞ is
defined as pðtÞ ¼ pðtÞejOt: Thus, it follows that gðtÞ ¼ gðtÞejOt: And it can be easily shown that
DðlÞ
�� �� ¼ Dðl� jOÞ

�� �� ¼ 0; where DðlÞ ¼ l2Mþ lC þ K : It implies that the eigenvalues in the
rotating coordinates are shifted by (�jO) from those in the modulated stationary coordinates. Thus,
if the eigenvalues associated with the modulated stationary and rotating complex coordinates are
defined as l and m; respectively, they satisfy the relation, m ¼ l� jO: The relations between the
eigenvalues for both coordinate systems are summarized in Table 1.
ble 1

envalue relations

Modulated stationary coordinates Rotating coordinates

envalue li
r mi

r ¼ li
r � jO

ired value li
�r ¼ l̄

i

r þ j2O mi
�r ¼ m̄i

r
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3. Modal analysis of simple asymmetric rotor system

This section is provided to analytically illustrate the modal analysis procedure using modulated
coordinates, which has been rigorously developed in the previous section, with a simple, yet
comprehensive, asymmetric rotor system. The proposed method is also compared with the
method based on formulation in the rotating coordinates. The equation of motion for the system
shown in Fig. 1 can be written, in the stationary coordinate system, as

€pðtÞ þ �ej2Ot €̄pðtÞ � jaO _pðtÞ þ j2�Oej2Ot _̄pðtÞ þ o20pðtÞ þ do20e
j 2Otþ2jð Þp̄ðtÞ ¼ gðtÞ=Jt (20)

where pðtÞ and gðtÞ are the complex (angular displacement) coordinate and the corresponding
force (torque) defined in the stationary coordinate system; � ¼ Jx � JZ

� ��
2Jtð Þ and d ¼

kx � kZ
� ��

2kð Þ indicate the degrees of the inertia and stiffness asymmetry, respectively, Jt ¼

Jx þ JZ
� �

=2 and k ¼ kx þ kZ
� ��

2 are the mean inertia and stiffness, respectively, Jx and JZ are the
two principal diametrical mass moments of inertia of the disk, Jp is the polar mass moment of
inertia of the disk, kx and kZ are the two principal stiffness coefficients, a ¼ Jp

�
Jt is the disk shape

factor. The value of a lies between 0 (for an infinitely long disk) and 2 (for an infinitesimally thin
disk). The undamped natural frequency o0 ¼

ffiffiffiffiffiffiffiffiffiffi
k=Jt

p
and j is the angle between the principal axes

of the shaft area moment and of the disk mass moment of inertia. The equation of motion (20) can
be rewritten, using the modulated complex stationary coordinates, as

1 �

� 1

" #
€pðtÞ

€~pðtÞ

( )
þ

�jaO �j2�O

�j2�O �jð4� aÞO

" #
_pðtÞ

_~pðtÞ

( )

þ
o20 de2jjo20

de�2jjo20 o20 � 2ð2� aÞO2

" #
pðtÞ

~pðtÞ

( )
¼

gðtÞ

~gðtÞ

( )
: ð21Þ
Fig. 1. A simple rotor with asymmetric stiffness and inertia [4].
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The characteristic equation associated with Eq. (21) becomes

DðlÞ
�� �� ¼ l� lF

1

� �
l� lF

�1

� �
l� lB

1

� �
l� lB

�1

� �
¼ 0; (22a)

from which the eigenvalues (latent roots) are obtained as

lB
�1 ¼ �jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b1b3

q
b1

vuut
þ jO; lF

�1 ¼ �jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b1b3

q
b1

vuut
þ jO; (22b)

where

b1 ¼ 1� �2; b2 ¼ 1� �d cos 2jþ O=o0
� �2

1� aþ a2
�
2� �2

� �
;

b3 ¼ 1� d2 � 2 O=o0
� �2

1� aþ �d cos 2j
� �

þ O=o0
� �4

1� aþ �ð Þ 1� a� �ð Þ:

It can be easily proven, from Eq. (22), that lB
�1 ¼ l̄

B

1 þ j2O and lF
�1 ¼ l̄

F

1 þ j2O: The unstable
threshold speeds Ot can be obtained, from the stability limit condition b3 ¼ 0 that holds for small
� and d such that b140 and b240; as

Ot1;t2

o0

" #2
¼
1� aþ �d cos 2jð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ �d cos 2jð Þ

2
� 1� aþ �ð Þ 1� a� �ð Þ 1� d2

� �q
1� aþ �ð Þ 1� a� �ð Þ

: (23)

Using Eq. (4), we obtain

ui
r

ūi
�r

¼ �
di

r

ci
r

¼ �
bi

r

ai
r

;
v̄i

r

vi
�r

¼ �
di

r

bi
r

¼ �
ci

r

ai
r

; (24)

where, for r ¼ �1; i ¼ B;F ;

ui
cr ¼

ui
r

�ui
r

( )
¼

ui
r

ūi
�r

( )
; v̄i

cr ¼
v̄i

r

�̄v
i

r

( )
¼

v̄i
r

vi
�r

( )
;

ai
r ¼

li
r

o0

" #2
� ja

O
o0

" #
li

r

o0

" #
þ 1 ¼

li
r � lF

r0

� �
li

r � lB
r0

� �
o20

;

bi
r ¼ �

li
r

o0

" #
� j2

O
o0

" #� �
li

r

o0

" #
þ dej2j;

ci
r ¼ �

li
r

o0

" #
� j2

O
o0

" #� �
li

r

o0

" #
þ de�j2j;

di
r ¼

li
r

o0

" #2
� j 4� að Þ

O
o0

" #
li

r

o0

" #
� 2 2� að Þ

O
o0

" #2
þ 1

¼
li

r � l̄
F

r0 � j2O
$ %

li
r � l̄

B

r0 � j2O
$ %

o20
¼

li
r � lF

r0

� �
li

r � lB
r0

� �
o20

:

Here, lF
r0 and lB

r0 are the eigenvalues associated with the forward and backward modes,
respectively, of the isotropic rotor whose equation of motion is given, letting d ¼ � ¼ 0 in Eq. (20),
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as

€p tð Þ � jaO _p tð Þ þ o20p tð Þ ¼ g tð Þ=Jt: (25)

Using the result in Eq. (6), we can derive

Ki
r ¼ u

i
rv̄

i
r ¼

di
r

Li
r

; �K
i

r ¼ u
i
rv

i
�r ¼ �

bi
r

Li
r

; (26)

where

Li
r ¼ 2li

r ai
r þ di

r

� �
þ j 2� að Þ di

r � ai
r

� �
O� 2�li

r bi
r þ ci

r

� �
:

Here, Ki
r and

�K
i

r are the residues associated with the mode l
i
r: Note that, for the special cases of

j ¼ 0 and j ¼ p=2; i.e. when the principal axes of the diametrical moment of inertia and the
angular stiffness are aligned, it holds ui

r=ūi
�r ¼ v̄i

r=vi
�r; because the system matrices become

symmetric, which does not hold in general. Using the above relation (26), we can express the
dFRFs as

HgpðjoÞ ¼
uF
1 v̄F
1

jo� lF
1

þ
uF
�1v̄

F
�1

jo� lF
�1

þ
uB
1 v̄B
1

jo� lB
1

þ
uB
�1v̄

B
�1

jo� lB
�1

¼
KF
1

jo� lF
1

þ
KF

�1

jo� lF
�1

þ
KB
1

jo� lB
1

þ
KB

�1

jo� lB
�1

;

H ~gpðjoÞ ¼
uF
1 �̄v

F

1

jo� lF
1

þ
uF
�1 �̄v

F

�1

jo� lF
�1

þ
uB
1 �̄v

B

1

jo� lB
1

þ
uB
�1 �̄v

B

�1

jo� lB
�1

¼
�K

F

1

jo� lF
1

þ
�K

F

�1

jo� lF
�1

þ
�K

B

1

jo� lB
1

þ
�K

B

�1

jo� lB
�1

: ð27Þ

On the other hand, transformation of Eq. (21) into the rotating coordinates leads to

1 �

� 1

" #
€pðtÞ

€~pðtÞ

( )
þ

j 2� að ÞO 0

0 �j 2� að ÞO

" #
_pðtÞ

_~pðtÞ

( )

þ
o20 þ a� 1ð ÞO2 dej2jo20 þ �O2

de�j2jo20 þ �O2 o20 þ a� 1ð ÞO2

2
4

3
5 pðtÞ

~pðtÞ

( )
¼

gðtÞ

~gðtÞ

( )
: ð28Þ

The characteristic equation associated with Eq. (28) becomes

DðlÞ
�� �� ¼ m� mF

1

� �
m� mF

�1

� �
m� mB

1

� �
m� mB

�1

� �
¼ 0; (29a)

from which the eigenvalues are obtained as

mB
�1 ¼ �jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b1b3

q
b1

vuut
; mF

�1 ¼ �jo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b1b3

q
b1

vuut
: (29b)

It can be easily proven, from Eqs. (22) and (29), that mB
�1 ¼ m̄B

�1; m
F
�1 ¼ m̄F

�1 and mB
�1 ¼

lB
�1 � jO; m

F
�1 ¼ lF

�1 � jO: On the other hand, the bi-orthonormalized latent vectors turn out to be



ARTICLE IN PRESS

J.-H. Suh et al. / Journal of Sound and Vibration 284 (2005) 651–671662
the same as those obtained in the modulated coordinates, i.e.

uB;F
c�1 ¼

uB;F
�1

ūB;F
�1

( )
¼ u

B;F
c�1 ¼

uB;F
�1

ūB;F
�1

( )
; v̄B;F

c�1 ¼
v̄B;F
�1

vB;F
�1

( )
¼ v̄

B;F
c�1 ¼

v̄B;F
�1

vB;F
�1

( )
: (30)

Then the dFRFs in the rotating coordinates are given as

HgpðjoÞ ¼
uF
1 v̄F
1

jo� mF
1

þ
uF
�1v̄

F
�1

jo� mF
�1

þ
uB
1 v̄B
1

jo� mB
1

þ
uB
�1v̄

B
�1

jo� mB
�1

¼
KF
1

jo� mF
1

þ
KF

�1

jo� mF
�1

þ
KB
1

jo� mB
1

þ
KB

�1

jo� mB
�1

;

HĝpðjoÞ ¼
uF
1 �̄v

F

1

jo� mF
1

þ
uF
�1 �̄v

F

�1

jo� mF
�1

þ
uB
1 �̄v

B

1

jo� mB
1

þ
uB
�1 �̄v

B

�1

jo� mB
�1

¼
�K

F

1

jo� mF
1

þ
�K

F

�1

jo� mF
�1

þ
�K

B

1

jo� mB
1

þ
�K

B

�1

jo� mB
�1

: ð31Þ

Here, HgpðjoÞ and HĝpðjoÞ represent the normal and reverse dFRFs defined in the rotating
coordinates, respectively. Thus, the relation between dFRFs defined from the modulated and
rotating coordinates is given by

Hgp jðoþ OÞð Þ ¼
X
r¼�1
i¼B;F

ui
rv̄

i
r

joþ jO� li
r

¼ HgpðjoÞ ¼
X
r¼�1
i¼B;F

ui
rv̄

i
r

jo� mi
r

;

H ~gp jðoþ OÞð Þ ¼
X
r¼�1
i¼B;F

ui
r �̄v

i

r

joþ jO� li
r

¼ HĝpðjoÞ ¼
X
r¼�1
i¼B;F

ui
r �̄v

i

r

jo� mi
r

: ð32Þ

In summary, Eq. (27) and, equivalently, Eq. (31) can be reduced to the form of

HgpðjoÞ
�� �� � Oð1Þ

jo� lF
1

�� ��þ Oð�; dÞ2

jo� lF
�1

�� ��þ Oð1Þ

jo� lB
1

�� ��þ Oð�; dÞ2

jo� lB
�1

�� ��
H ~gpðjoÞ
�� �� � Oð�; dÞ

jo� lF
1

�� ��þ Oð�; dÞ

jo� lF
�1

�� ��þ Oð�; dÞ

jo� lB
1

�� ��þ Oð�; dÞ

jo� lB
�1

�� �� :
(33)

From the above expressions (27) and (33) for the normal and reverse dFRFs, we can conclude
that:
1.
 Eq. (22), we can easily verify the relation li
r � li

r0 � Oð�; dÞ2: It implies that the perturbation of
the eigenvalue due to the presence of asymmetry ð�; dÞ in the rotor model is the order of ð�; dÞ2:
2.
 It holds

Ki
�1

Ki
1

¼
di
�1

di
1

 !
Li
1

Li
�1

ffi
li
�1 � loF

�1

� �
li
�1 � loB

�1

� �
li
1 � loF

�1

� �
li
1 � loB

�1

� � �
O �; dð Þ

2

O 1ð Þ
� O �; dð Þ

2;

i.e. the ratio of the residue value of the normal dFRF between the strong and weak modes
becomes Oð�; dÞ2:



ARTICLE IN PRESS

J.-H. Suh et al. / Journal of Sound and Vibration 284 (2005) 651–671 663
3.
 Since �K
i

r ¼ �bi
r=L

i
r � O �; dð Þ; the residue value of the r-dFRF for all, strong and weak, modes

becomes the order of ð�; dÞ in magnitude.

In order to demonstrate the analytical findings with the simple asymmetric rotor system, the
parameter values given in Table 2 are used in the simulation, ignoring the inertia asymmetry ð�Þ:
Figs. 2(a) and (b), the whirl charts, are the plots of the imaginary part of the eigenvalues obtained,
respectively, in the modulated stationary and the rotating coordinates. In the plots, the strong
(marked lB

1 ; l
F
1 ; m

B
1 ; m

F
1 ) and weak (marked lB

�1; l
F
�1; m

B
�1; m

F
�1) modes are represented by thick and

thin solid lines, respectively. Note that the whirl charts in the modulated stationary and the
rotating coordinates are symmetric with respect to ImðlÞ ¼ O (synchronous to the rotational

speed) and ImðmÞ ¼ 0; respectively, since it holds lB
�1 � jO ¼ ðlB

1 � jOÞ
______________

; lF
�1 � jO ¼ ðlF

1 � jOÞ
_____________

and mB
�1 ¼ m̄B

1 ; m
F
�1 ¼ m̄F

1 : Comparison of Figs. 2(a) and (b) also confirms the relations mB
�1 ¼

lB
�1 � jO; m

F
�1 ¼ lF

�1 � jO:
Figs. 3 and 4 show the cascade plots for the dFRFs of the simple asymmetric rotor in the

modulated stationary and the rotating coordinates, respectively. Note that the dFRFs in the
rotating coordinates can be obtained by shifting the corresponding dFRFs in the modulated
Table 2

Numerical data for the analysis model

Parameter a e j o0 d O

Data 0.6 0 0 1.0 (rad/s) 0.5 0–5 (rad/s)

Fig. 2. Whirl charts of the simple asymmetric rotor system in the (a) modulated and (b) rotating coordinates.
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rotating coordinates (modal damping ratio of 0.03 was imposed solely for plotting convenience).
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stationary coordinates by �O: In the plots of n-dFRFs, only the two strong (positive subscripted)
modes (lB

1 ; l
F
1 ) are prominent, while the two weak (negative subscripted) modes (l

B
�1; l

F
�1) are

hardly observed. On the other hand, the weak modes are as significant as the strong modes in the
r-dFRFs.
In summary, this section analytically and numerically shows the modal analysis procedure of

the proposed method and compares the proposed method and the conventional method based on
the rotating coordinate transformation, confirming that the proposed method provides the same
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useful information as the conventional method based on formulation in the rotating coordinates.
Note that transformation of the equation of motion for asymmetric rotor system defined in the
stationary coordinates into that defined in the rotating coordinates is also a kind of modulation
technique, which has been proven useful but confined only to asymmetric rotor system with
isotropic stator. However, the proposed method can be extended, without loss of generality, to
general rotor systems whose rotating and stationary parts both possess asymmetric properties.
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For general rotors, transformation of the periodically time-varying equation of motion to the
rotating coordinates does not lead to a time-invariant equation. Thus, the conventional modal
analysis method based on the time-invariant equation of motion cannot be directly applied to
general rotors. The proposed method becomes still effective for general rotors, which will be
extensively treated in a separate paper.
4. Numerical example: a flexible asymmetric rotor

To demonstrate the applicability of the proposed modal analysis method developed for
asymmetric rotors, a numerical example is treated with a flexible asymmetric rotor, having an
open transverse crack. The finite element model of the rotor is shown in Fig. 5, and the material
and geometrical properties are listed in Table 3. The model consists of 26 Rayleigh beam elements,
two rigid disks, and two isotropic bearing supports. We assume there exists an open transverse
crack in the shaft, which causes bending stiffness asymmetry in the shaft [10]. Here, an open crack
with the crack depth to shaft diameter ratio a/D=0.48 is assumed to develop at node #12. It is
well known in the literature on fracture that the plastic deformation near the crack edge or the
oxide layer formed on the cracked region resists the crack from being fully closed back again [11].
Thus, an open crack model may be often valid. Furthermore, for the purpose of effective
diagnosis of cracks, an electromagnetic exciter can be employed to properly generate a harmonic
excitation synchronous to the shaft rotational frequency so that the synchronous excitation allows
the breathing crack completely open during the shaft revolution. In this case, the rotor behaves
like a typical asymmetric rotor, whose dynamics can be easily analyzed by the proposed
method [12].
In this example, the bending stiffness reduction due to stress concentration around the crack is

taken into account using the stress intensity factor [13,14]. The whirl charts are plotted in Figs.
6(a) and (b), respectively, for the modulated complex stationary coordinates and the complex
rotating coordinates over th rotational speed range of 0–10,000 rpm. Comparison of the two
results confirms the relation, mi

r ¼ li
r � jO: The hatched regions marked in the figures indicate the

unstable speed regions where the real parts of the eigenvalues become positive. The two figures
provide identical information regarding the stability issue.
Fig. 5. Flexible rotor configuration and geometry.
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Table 3

Specifications of the numerical mode

Mesh data

# of elements =26

# of disks =2

# of bearings =2

Shaft

Length=51 cm, Diameter=1.2 cm

Density=7806 kg/m3

Young’s modulus=2.08� 1011N/m2

Location Mass Polar moment of inertia Dia. moment of inertia

(m) (kg) (kgm2) (kgm2)

Disk

0.21 1.236 1.2� 10�3 6.8� 10�4

0.476 0.857 0.9� 10�3 3.5� 10�4

Node number Stiffness (N/m) Damping (N s/m)

Bearings

4.21 kyy=kzz=5� 10
8 cyy=czz=4.5� 10

3

(identical) kyz=kzy=0 cyy=czz=0
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Fig. 6. Whirl charts of the open cracked flexible asymmetric rotor in the (a) modulated and (b) rotating coordinates:

crack at node #12 with a/D=0.48.
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Fig. 7 shows the cascade plots of the n/r-dFRFs at node #12, when the excitation force is given
at node #25, the location of disk #2. The operating rotational speed is assumed to be 600 rpm
(10Hz). In the n-dFRF plot, the four strong modes (li

r; i ¼ B;F ; r ¼ 1; 2) are dominant, whilst the
weak modes are hardly observed. On the other hand, the r-dFRF plot, unlike the n-dFRF plot,
equally well reveals all the eight modes.
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Fig. 7. Cascade plots of (a) normal and (b) shifted reverse dFRFs of the flexible rotor with a crack: number of used

modes=12; excitation node 25; sensor node 13 (modal damping ratio of 0.02 was imposed solely for plotting

convenience).
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Fig. 8 shows the dFRFs of the flexible rotor with the depth of crack varied. To better show the
change of dFRFs due to the crack, modal damping ratio of 0.02 is imposed to every mode used in
the calculation. The r-dFRFs are significantly changed due to the crack growth, while the normal
dFRFs are little affected by the change of the crack depth. Figs. 7 and 8 imply that the r-dFRFs
are very useful for identification of the presence and severity of crack in the shaft.
5. Concluding remarks

This paper presents a generalized modal analysis method for asymmetric rotor systems
employing the modulated coordinates. An equivalent time-invariant equation of motion in the
modulated complex stationary coordinates is derived. The proposed method provides a complete
modal solution in the stationary coordinates for asymmetric rotor systems with isotropic stators.
The characteristics of eigenvalues and latent vectors are theoretically investigated by using the
equivalent time-invariant equation of motion.
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Appendix. Perturbation of latent roots

Let the perturbed latent roots and corresponding latent vectors be represented by

li
r ¼ li

r0 þ �li
r1 þ �2li

r2 þ Oð�3Þ; r ¼ �1; . . .� N; (A.1)

ui
r

�ui
r

( )
¼

ui
r0 þ �ui

r1 þ Oð�2Þ

�ui
r0 þ ��ui

r1 þ Oð�2Þ

( )
; (A.2)

v̄iT
r �̄v

iT

r

n o
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iT
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: (A.3)

Substituting Eqs. (A.1) and (A.2) into
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i
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i
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i
rÞ
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i
rÞ

" #
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�ui
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( )
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� �
; (A.4)

with

Df ðlÞ ¼ l2Mf þ lCf þ Kf ;

DrðlÞ ¼ l2M̄r þ lC̄r þ K̄r;

~DrðlÞ ¼ l2Mr þ lðCr � j4OMrÞ þ Kr � j2OCr � 4O2Mr;

~Df ðlÞ ¼ l2M̄f þ lðC̄f � j4OM̄f Þ þ K̄f � j2OC̄f � 4O2M̄f : ðA:5Þ
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leading to
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For r40; since Df ðl
i
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i
r0 ¼ 0 and �ui

r0 ¼ 0; it holds, from Eqs. (A.7) and (A.3),
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And, similarly, for ro0, since ~Df ðl
i
r0Þu

i
r0 ¼ 0 and u

i
r0 ¼ 0; it holds, from Eqs. (A.7) and (A.3),
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